

СИСТЕМА ДИАГНОСТИКИ ИЗОЛЯЦИИ СА7200

СИСТЕМА ДІАГНОСТИКИ ІЗОЛЯЦІЇ СА7200

Руководство по эксплуатации АМАК.411213.014 РЭ

Киев

6.5	Эквивалентная схема 31
7 NA	НЕЛЬ УПРАВЛЕНИЯ СА7200 32
8 ПО	ДКЛЮЧЕНИЕ CA7200 К ТЕСТИРУЕМОМУ
ОБ	ОРУДОВАНИЮ 34
9 ПРЕ	ДВАРИТЕЛЬНЫЕ УСТАНОВКИ 39
9.1	Ввод даты и времени 39
9.2	Калибровка сенсорного экрана 40
9.3	Регулировка громкости звуковых сообщений 40
9.4	Версия программы 41
9.5	Регулировка контрастности экрана 41
9.6	Восстановление настроек по умолчанию 41
10 BBC	ОД ДАННЫХ ПО ТЕСТИРУЕМОМУ ОБОРУДОВАНИЮ 42
11 N3I	ИЕРЕНИЯ 43
11.1	Настройка режимов измерения 43
11.2	Тестирование изоляции (Insulation Test) 46
11.3	Тестирование зависимости параметров изоляции от
	напряжения (Tip-up Test) 51
11.4	Тестирование зависимости параметров изоляции от
	частоты (Frequency Sweep Test) 53
11.5	Тестирование тока холостого хода (Excitation Current
	Test)
11.6	Гестирование коэффициента трансформации
	(Iransformer Turns Ratio Test)
11./	Внесение в базу пользовательского диэлектрика
42 0 4 1	при тестировании изоляции 58
12 PAE	50 ГА С АРХИВАМИ
12.1	Сохранение результатов измерении
12.2	Просмотр архива
12.3	Сохранение архива в ПК
12.4	
12 011	
	ОГУДОВАПИЛ
14 YCI	ГАПЕПИЕ ПРОВЛЕН

1 ИН	СТРУКЦИЯ ПО ПРИЕМКЕ	6
2 ОБІ	ЩИЕ СВЕДЕНИЯ	6
3 БЕЗ	ОПАСНОСТЬ	7
3.1	Общие меры предосторожности	7
3.2	Организационные меры по безопасности	
	персонала	8
3.3	Средства обеспечения безопасности СА7200	10
3.4	Применение средств для обеспечения	
	безопасности СА7200	12
3.5	Выводы	12
4 KOI	МПЛЕКТНОСТЬ	14
4.1	Базовый комплект	14
4.2	Дополнительные устройства	15
5 OCł	НОВНЫЕ ХАРАКТЕРИСТИКИ	16
5.1	Назначение и режимы работы	16
5.2	Технические характеристики	18
5.	2.1 Измеряемые и индицируемые величины	18
5.	2.2 Диапазоны и погрешности измерений	20
5.	2.3 Рекомендованный интервал между	21
5	2 4 Характеристики встроенного источника	
5.	испытательного напряжения	21
5.	2.5 Максимально допустимая емкость объекта	
	измерений	21
5.	2.6 Интерфейсы	22
5.	2.7 Массогараритные характеристики	22
J.,	2.8 эсловия эксплуатации, транспортирования и хранения	22
5.	2.9 Питание	23
5.	2.10 Средства безопасности	23
6 УСТ	РОЙСТВО И РАБОТА	24
6.1	Принцип действия СА7200	24
6.2	Объекты измерения СА7200 и выбор	
	измеряемого участка изоляции	25
6.3	Измерение тока холостого хода	30
6.4	Измерение коэффициента трансформации	30
		1

Внимание!

CA7200

CA7200

Дата Версия Апрель 2020 1.0

Читайте внимательно данную инструкцию перед использованием Системы диагностики изоляции СА7200

Пользователь ответственен за безопасность во время эксплуатации.

Мы сделали все возможное для того, чтобы информация, представленная в данном руководстве, была полезной, точной и абсолютно надежной. Тем не менее, ПРОИЗВОДИТЕЛЬ не несет ответственности за любые возможные неточности. По вопросам технического обслуживания обращаться по следующим адресам:

Почтовый адрес: Украина, 04128, г.Киев, а/я 33, ООО "ОЛТЕСТ" Юридический адрес: Украина, 03056, г. Киев, пр. Победы, 37/1, кв. 11, ООО "ОЛТЕСТ" E-mail: <u>info@oltest.ua</u> Web-aдрес: <u>www.oltest.com.ua</u> Тел.: 380-44-537-08-01, 380-44-331-46-21

1 ИНСТРУКЦИЯ ПО ПРИЕМКЕ

При получении Системы диагностики изоляции СА7200 (далее – CA7200) необходимо убедиться, что упаковка не повреждена. Если обнаружено повреждение, то следует немедленно подать иск перевозчику и проинформировать о случившемся представителя ПРОИЗ-ВОДИТЕЛЯ.

Затем необходимо распаковать СА7200 и проверить наличие его составных частей в соответствии с Упаковочным листом и Паспортом. При наличии несоответствия для разрешения проблемы надо сообщить о случившемся представителю ПРОИЗВОДИТЕЛЯ.

СА7200 перед отправкой был тщательно проверен на соответствие прилагаемой эксплуатационной документации соответствующими службами ПРОИЗВОДИТЕЛЯ и полностью готов к применению.

2 ОБЩИЕ СВЕДЕНИЯ

СА7200 предназначена для высокоточных измерений параметров изоляции при испытаниях высоковольтного силового оборудования (измерительных и силовых трансформаторов, высоковольтных вводов, кабелей, выключателей, конденсаторов, разрядников и т.п.) в заводских и полевых условиях при испытательных напряжениях до 12 кВ.

Основные достоинства СА7200:

– Выполнение тестов изоляции для незаземленных (UST) и заземленных объектов измерения (GST).

– Наличие встроенного в СА7200 источника испытательного напряжения, позволяющего выполнять измерения в диапазонах частот от 15 до 400 Гц и напряжения от 100 В до 12 кВ.

 Использование современных методов обработки сигналов и алгоритмов фильтрации, дающих высокую точность измерений в полевых условиях при высоких уровнях помех.

 Применение стабильных компонентов измерительной цепи, обеспечивающих высокую точность измерений в широком диапазоне температур окружающей среды.

– Все измерения автоматизированы, что минимизирует время проведения испытаний.

 Управление процессом измерения выполняется непосредственно с сенсорного экрана, размещенного на СА7200.

– Наличие специальных мер безопасности, позволяющих выполнять аварийное отключение СА7200, а также запрещающих подачу высокого напряжения при отключенных или неисправных технических средствах безопасности, вмонтированных в СА7200.

Символ	Содержание информации
4	Риск поражения электрическим током!
	Информация по безопасности персонала и надежной работе CA7200, которую необхо- димо принять к сведению для предотвраще- ния проблем. Риск повреждения или разрушения оборудо- вания при испытании.

	Аббревиату	ра
DUT	Device under test	Тестируемое оборудование
GST	Grounded Specimen Test	Схема измерения заземленных объектов
TTR	Transformer Turns Ratio	Коэффициент трансформации
UST	Ungrounded Specimen Test	Схема измерения незаземленных объектов

 Мобильность, СА7200 выполнен в одном корпусе и легко транспортируется, поскольку размещен в прочном и надежном чемодане на колесах. Все необходимые кабели упакованы в удобную для переноски сумку.

– Возможность работы от сети питания 50/60 Гц с номинальным напряжением в диапазоне от 100 до 240 В.

По уровню генерируемых электромагнитных помех и стойкости к внешним электромагнитным помехам СА7200 соответствует требованиям ДСТУ EN 61326-1.

3 БЕЗОПАСНОСТЬ

Одним из важнейших факторов при работе с высоковольтным электрическим оборудованием является безопасность. СА7200 соответствует общим требованиям безопасности по способу защиты человека от поражения электрическим током ДСТУ EN 61010-1.

Помните, СА7200 и тестируемое оборудование генерируют высокое напряжение, которое может быть опасно для жизни!

Работа с высоковольтным электрообрудованием требует знаний и выполнения правил безопасности, описанных в этом документе, а также в государственных и отраслевых нормативных документах по технике безопасности.

Лица, выполняющие испытания и обслуживание высоковольтного оборудования, обязательно должны быть ознакомлены с правилами и рекомендациями, приведенными ниже.

ПРОИЗВОДИТЕЛЬ и его торговые представители не несут ответственности за прямой или косвенный ущерб, нанесенный людям и/или имуществу, причиной которого является несоблюдение правил безопасности, указанных в данном документе, либо неправильное использование поставляемого оборудования.

3.1 Общие меры предосторожности

При работе с СА7200 следует соблюдать следующие правила:

– Использовать СА7200 только в условиях, описанных в 5.2.8.

- СА7200 запрещено использовать под дождем или снегом.

– Запрещено входить в высоковольтную зону, когда питание СА7200 включено.

– Запрещено подключать СА7200 к работающему оборудованию или оборудованию, находящемуся под напряжением.

– Запрещено выполнять другие работы с тестируемым оборудованием во время выполнения измерений с помощью СА7200.

 Не оставляйте СА7200 без присмотра во время проведения измерений.

– Не включайте СА7200, если он неисправен.

- Не включайте СА7200 во взрывоопасной среде.

– Не пытайтесь ремонтировать или обслуживать СА7200 самостоятельно.

3.2 Организационные меры по безопасности персонала

Выполнение работ с использованием СА7200 должно осуществляться бригадой, состоящей по меньшей мере из двух человек:

– **Руководителя работ**, в чьи обязанности входит подготовка к измерениям, наблюдение за их ходом, предотвращение возможных рисков, обеспечение выполнения всех мер предосторожности, подача команд Оператору и другим работникам.

 Оператора, в обязанности которого входит подключение СА7200 к тестируемому оборудованию и тестирование его с помощью СА7200; в поле зрения Оператора должна находиться вся зона измерений.

Разрешается привлечение дополнительных работников для контроля проведения измерений или ускорения работы бригады, например:

– Помощника оператора, выполняющего указания Оператора при подключении СА7200 к тестируемому оборудованию и при тестировании его.

– Наблюдателя, обязанностью которого является наблюдение за ходом испытаний и соблюдением мер предосторожности.

Визуальные, вербальные и другие сигналы между работниками должны быть оговорены заранее.

Более подробно обязанности упомянутых выше лиц изложены в соответствующих нормативных документах государственного, отраслевого и местного уровня по технике безопасности, касающихся испытаний и измерений электрооборудования.

Лица, работающие в непосредственной близости от зоны, где проводятся измерения, должны быть заблаговременно проинформированы Руководителем работ.

7

🚹 Рабо

Работники, обладающие кардиостимуляторами, должны проконсультироваться с врачом в случае, если им предстоит работать с СА7200 или находиться вблизи зоны измерений, где прибор будет использоваться.

Перед проведением высоковольтных испытаний и измерений работникам иногда приходится взбираться на высоковольтное оборудование для выполнения разнообразных подключений. При проведении испытаний никто не должен находиться на тестируемом оборудовании и на расстоянии от его токоведущих частей меньшем, чем нормируемое в нормативных документах, касающихся техники безопасности при высоковольтных испытаниях!

Все оборудование, к которому будет подключен СА7200, должно быть обесточено. Высоковольтное оборудование должно быть отсоединено от токоведущих шин и правильно заземлено.

Защитное заземление СА7200 должно быть подключено к шине защитного заземления испытуемого оборудования.

При выполнении измерений источник высокого напряжения, встроенный в СА7200, питает измерительную цепь. Уровни напряжения в проводах, разъемах и измерительных кабелях опасны для жизни. Избегайте контакта с тестируемым оборудованием и его частями, а также измерительными кабелями.

Никогда не держите в руках и не дотрагивайтесь до Кабеля ВВ при наличии на нем высокого испытательного напряжения. При работе рекомендуется надевать диэлектрические перчатки не только при подключении к выводам высокого напряжения, но и при переключении органов управления СА7200.

При проведении измерений важно убрать все посторонние предметы, такие, как стойки, лестницы, ведра и т.п., из высоковольтной зоны и предотвратить их случайное попадание в нее. Рекомендуется использовать барьеры и защитные ленты для ограждения высоковольтной зоны с целью предотвращения проникновения в нее посторонних лиц.

Оборудование должно быть размещено таким образом, чтобы обеспечить достаточное расстояние между СА7200 и тестируемым объектом во время подачи высокого напряжения.

Подключение всех кабелей к СА7200 следует выполнять только после надлежащего заземления его в соответствии с указаниями раздела 8. Любой иной порядок подключения запрещается!

Выполнять подключение измерительных кабелей к тестируемому обрудованию разрешается только после того, как эти кабели были подключены к СА7200.

После всех измерений сперва следует отключить кабели СА7200 от выводов тестируемого оборудования и заземлить эти выводы, затем отключить кабели от разъемов СА7200. Кабель защитного заземления должен быть отключен от СА7200 в последнюю очередь!

Не пытайтесь отключить Кабели измерительные или Кабель ВВ от выводов или входов тестируемого устройства или СА7200, если напряжение не понижено до нуля и питание СА7200 не отключено. Попытки отключения оборудования под напряжением могут привести к серьезному и даже смертельному поражению электрическим током!

3.3 Средства обеспечения безопасности СА7200

Для обеспечения безопасности персонала в СА7200 предусмотрены следующие меры:

Контроль наличия заземления.

В СА7200 имеется специальная схема, которая блокирует подачу высокого напряжения в измерительную цепь до момента правильного подключения системы заземления. Индикатор "GND" на передней панели СА7200 информирует о состоянии заземления СА7200.

Цвет индикатора "GND"	Состояние заземления СА7200			
Красный	Не подключено			
Зеленый	Подключено			

Блокировка подачи высокого напряжения и его экстренное (аварийное) отключение.

Блокировка и экстренное (аварийное) отключение СА7200 могут быть выполнены независимо Руководителем работ и/или Оператором с помощью следующих органов управления:

– Кнопка "Safety Switch" – кнопка пружинного типа, которая с помощью кабеля подсоединяется к разъему "Safety Switch" на передней панели СА7200. Кнопкой "Safety Switch" управляет Руководитель работ или Наблюдатель. СА7200 не будет работать, если кабель с кнопкой "Safety Switch" не подключен к разъему "Safety Switch". Кнопка "Safety Switch" имеет три положения:

Состояние кнопки "Safety Switch"	Включение высокого напряжения
, отпущена	Запрещено, установлена блокировка
, нажата в промежу- точном положении	Разрешено, блокировка снята
, нажата полностью	Запрещено, установлена блокировка

– Кнопка "Emergency Stop", которая расположена на передней панели СА7200 и используется Оператором для аварийной остановки измерений в опасных и непредвиденных ситуациях. Когда кнопка "Emergency Stop" нажата, СА7200 не может быть повторно включен. Для того, чтобы разблокировать кнопку "Emergency Stop", ее необходимо повернуть по часовой стрелки.

Индикация наличия высокого напряжения.

На передней панели СА7200 установлен индикатор "HV", цвет которого информирует о наличии высокого напряжения в измерительной цепи.

Цвет индикатора "HV"	Состояние СА7200				
Красный	Высокое напряжение подано, выполняется измерение				
Желтый	Высокое напряжение не подано, но подача выс кого разблокирована (кнопка "Emergency Stop" о пущена, а кнопка "Safety Switch" нажата в промеж точном положении)				
Зеленый	Высокое напряжение не подано и его подача за- блокирована кнопкой "Emergency Stop" и/или кнопкой "Safety Switch"				

Подача звукового и светового сигналов при выполнении испытаний.

В комплект поставки опционально входит Светосигнальное устройство "Safety Strobe Light", которое подключается к разъему "Safety strobe" на передней панели СА7200. При подаче высокого напряжения в измерительную цепь Светосигнальное устройство подает звуковые и световые сигналы.

3.4 Применение средств для обеспечения безопасности СА7200

При выполнении измерения кабель с кнопкой "Safety Switch" должен быть подключен к CA7200. Кнопка "Safety Switch" должна находиться в руках Руководителя работ или Наблюдателя, должна быть нажата в промежуточном положении и удерживаться в нем до окончания измерения.

Настоятельно рекомендуется нажимать кнопку "Safety Switch" только непосредственно перед началом измерений. До этого момента все подключения и подготовительные работы должны быть выполнены, а персонал находиться в безопасном месте.

В момент запуска измерения Светосигнальное устройство подаст звуковой сигнал и будет мигать до окончания измерения и снятия высокого напряжения.

В случае возникновения опасности тот, в чьих руках кнопка "Safety Switch", Руководитель работ или Наблюдатель, должен немедленно ее отпустить, а Оператор нажать кнопку "Emergency Stop". При выполнении хотя бы одного из этих действий – подача высокого напряжения будет заблокирована и цвет индикатора "HV" на передней панели СА7200 станет зеленым!

Кнопка "Safety Switch" должна использоваться всегда при проведении измерений! Категорически запрещено искусственно закорачивать разъем "Safety Switch" или блокировать кнопку "Safety Switch" с помощью механических средств!

3.5 Выводы

Невозможно предотвратить и предвидеть все потенциальные риски при использовании высоковольтного оборудования, которые могут возникнуть при различных вариантах использования СА7200. Руководителю и другим участникам перед началом работы необходимо рассмотреть все возможные аспекты проведения высоковольтных измерений в дополнение к правилам, описанным в данной главе.

4 КОМПЛЕКТНОСТЬ

4.1 Базовый комплект

Наименование	Обозначение АМАК	Кол.
СА7200 (Основной блок) CA7200 (Main Unit)	411722.019	1
Кабель BB, 20 м HV Cable, 20 m	685651.062	1
Кабель измерительный, синий, 20 м Measuring Cable, blue, 20 m	685612.129	1
Кабель измерительный, желтый, 20 м Measuring Cable, yellow, 20 m	685612.130	1
Кабель заземления, 10 м Grounding Cable,10 m	685615.012	1
Кнопка безопасности (длина кабеля 10 м) Safety Switch (cable length 10 m)	418131.005	1
Кабель питания 10 A EU (CEE 7/XVII - C13) Mains cable 10 A EU (CEE 7/XVII - C13)	_	1
Крюк кабеля BB HV Cable Hook	301531.012	1
Зажим кабеля BB HV Cable Clamp	301531.013	1
Зажим кабеля измерительного (раскрыв до 32 мм) Measuring Cable clamp (range up to 32 mm)	685614.136	2
Зажим кабеля измерительного (раскрыв до 9,5 мм) Measuring Cable clamp (range up to 9,5 mm)	685614.137	2
Переходник для кабеля измерительного Measuring Cable Bushing Tap Adapter	685614.138	1
Переходник для BB кабеля HV Cable Bushing Tap Adapter	685614.139	1
Расширительный зажим (раскрыв до 120 мм) Extention Clamp (range up to 120 mm)	685614.090	2
USB флеш-память USB Flash Drive	408111.003	1

На всех стадиях испытаний и эксплуатации СА7200 должны соблюдаться требования по электробезопасности в соответствии с ДСТУ EN 61326-1 и эксплуатационной документацией на оборудование, которое используется

Настоятельно рекомендуется изучить рекомендации, приведенные в документе "IEEE 510 – 1983, Recommended Practices for safety in High-Voltage and High-Power Testing".

Много несчастных случаев при использовании высоковольтного оборудования происходит с людьми, которые имеют большой опыт работы с высоковольтным оборудованием.

Самая большая опасность – это взаимодействие с работающим оборудованием. Для того, чтобы избежать ее, работники должны быть крайне внимательны, выполнять инструкции, обеспечивая собственную безопасность и безопасность своих коллег.

1 doopon		
Рекомендации по применению Applications Guide	411213.014 РП	
Сумка для кабелей и аксессуаров Bag for cables and access	323382.047	

4.2 Дополнительные устройства

Наименование	Обозначение АМАК	Кол.	Примечание
Светосигнальное устройство (длина кабеля 10 м) Safety Strobe Light (cable length 10 m)	425132.004		Количество определяется при заказе
Конденсатор эталонный 12 кВ Reference Capacitor 12 kV	411634.056		Количество определяется при заказе
Конденсатор измерительный TTR TTR Test Capacitor	411634.057		Количество определяется при заказе

5 ОСНОВНЫЕ ХАРАКТЕРИСТИКИ

5.1 Назначение и режимы работы

СА7200 предназначен для проведения испытаний изоляции при диагностике силовых трансформаторов, автотрансформаторов, реакторов, измерительных трансформаторов, высоковольтных вводов, кабелей, конденсаторов и другого энергетического оборудования в заводских и полевых условиях. Встроенный источник испытательного напряжения позволяет выполнять высоковольтные измерения при различных уровнях и частотах испытательного напряжения.

Перечень индицируемых и измеряемых величин приведен в 5.2.1.

СА7200 выполняет измерения в следующих режимах:

1 <u>"Insulation Test</u>", в котором измеряются емкость тестируемых участков изоляции; тангенс угла диэлектрических потерь tg δ (DF), характеризующие состояние изоляции при испытательном напряжении от 0,1 до 12 кВ в диапазоне частот 45...70 Гц или при испытательном напряжении от 0,1 до 4 кВ в диапазоне частот 15...400 Гц.

При этом обеспечивается:

выбор схем измерения для заземлённых (GST) и для незаземлённых (UST) объектов измерения;

 автоматическое приведение результатов измерения DF и PF к температуре 20°C;

- подавление помех методом отстройки от частоты сети;

– автоматическая компенсация влияния емкости участков изоляции, шунтирующих измерительный вход, на результаты измерения;

- сохранение результатов измерения в архиве.

2 <u>"Tip-upTest"</u>, который предназначен для определения зависимости DF от приложенного напряжения при испытательном напряжении от 0,1 до 12 кВ в диапазоне частот 45...70 Гц или от 0,1 до 4 кВ в диапазоне частот 15...400 Гц.

При этом обеспечивается:

16

– выбор схем измерения для заземлённых (GST) и для незаземлённых (UST) объектов измерения;

 выбор ряда значений напряжения, при которых будут выполняться измерения;

 вывод результатов измерения в графическом и табличном виде;

- сохранение результатов измерения в архиве.

3 <u>"Frequency Sweep Test"</u>, который предназначен для определения зависимости DF от частоты при испытательном напряжении от 0,1 до 4 кВ в диапазоне частот 15...400 Гц.

5 Основные характеристики

+

+

+

+

+

+

+

+

+

При этом обеспечивается:

/)725T

- выбор схем измерения для заземлённых (GST) и для незаземлённых (UST) объектов измерения;

- выбор (или ввод) ряда значений частоты, при которых будут выполняться измерения;

- вывод результатов измерения в графическом и табличном виде;

- сохранение результатов измерения в архиве.

4 "Excitation Current Test", который предназначен для измерения тока холостого хода испытываемого трансформатора, а также индуктивности.

5 "Transformer Turns Ratio Test", который предназначен для измерения коэффициента трансформации при однофазном возбуждении.

5.2 Технические характеристики

Manapagani la la lauguruna la pagurunu

0.2.1 измеряемые и индицируемые величины							
			Режимы СА7200				
N п/п	Наименование величины	Обозначение	Insulation Test	Tip-up Test	Frequency Sweep Test	Excitation Current Test	Transformer Turns Ratio Test
	Измеряемые	и индицируем	ые ве	эличи	ны		
1	Тангенс угла потерь (tgδ) Dissipation Factor	DF	+	+	+		
2	Тангенс угла потерь, приведенный к тем- пературе 20°С Dissipation Factor with temperature correction to 20°С	DF@20°C	+				
3	Коэффициент мощности Power Factor (cos φ)	PF	+	+	+		
4	Коэффициент мощности соз ф, при- веденный к темпера- туре 20°С Power Factor with temper- ature correction to 20°С	PF@20°C	+				
5	Емкость	Cx	+				

Lx

U

F

6

7

8

Capacitance Индуктивность

Inductance Напряжение

Frequency

Voltage Частота

5.2.2 Диапазоны и погрешности измерений

Наименование величины	Обозначение	Диапазон измерений	Разрешающая способность	Пределы допускаемой погрешности измерений	
Тангенс угла потерь (tgδ) Dissipation Factor	DF	010000%	0,001%	± (0,5 % rdg+0,01%) ¹	
Коэффициент мощности (соsゅ) Power Factor	PF	0100 %	0,001%	± (0,5 % rdg+0,01%) ¹	
Емкость Capacitance	Сх	6 пФ…6 мкФ	0,01 пФ	± (0,1 % rdg+0,1 пФ)	
Индуктивность Inductance	Lx	2 Гн2 МГн	0,1 мГн	± (0,5 % rdg+1 мГн)	
Испытательное напряжение Test Voltage	U	10012000 B	1 B	± (0,3% rdg+1 B)	
Сила тока Current	lx	20 мкА…200 мА	0,1 мкА	± (0,3 % rdg+1 мкА)	
Активные потери Power Loss	Ρ	0400 Вт	0,1 мВт	±(0,8 % rdg+0,1 мВт)	
Частота Frequency	f	15400 Гц	0,01 Гц	± (0,1 % rdg+0,1 Гц)	
¹ Пределы погрешности определены для диапазона частот испытательного напряжения 4570 Гц					

			Режимы СА7200				
N n/n	Наименование величины	Обозначение	Insulation Test	Tip-up Test	Frequency Sweep Test	Excitation Current Test	Transformer Turns Ratio Test
9	Сила тока Current	lx	+			+	
10	Активная потери Power Loss	Р	+			+	
11	Отношение сигнал/помеха Signal to Noise Ratio	SNR	÷			+	
12	Коэффициент трансформации Transformer Turns Ratio	Ν					+
	Дополнитель	но индицируемая	я ин	форм	ация		
13	Время/Дата Time/Date	_	+	+	+	+	+
14	Температура изоляции Insulation Temperature	Т	+				
15	Коэффициент температурной коррекции Temperature Correction Factor	Kcor	+				
16	Тип диэлектрика Dielectric Type	_	+				
17	Схема измерения Test mode	_	+	+	+	+	+

5.2.6 Интерфейсы

Назначение	Наименование
Управление процессом измерения	Сенсорный экран 5,6"
Оптический разъем	FOC
USB разъем для подключения флеш- памяти	••
Сервисный разъем	Service Port

5.2.7 Массогабаритные характеристики

Наименование	Размеры, мм	Вес, кг
СА7200 (основной блок)	550x330x 250	27
Светосигнальное устройство	91x110	0,9
Конденсатор эталонный 12 кВ	112x112x47	0,5
Конденсатор измерительный TTR	110x110x250	2
Сумка с кабелями	800x400x500	12

5.2.8 Условия эксплуатации, транспортирования и хранения

Наименование	Значение
Температура окружающего воздуха	От минус 20 до плюс 50 °C
Относительная влажность воздуха	До 95 %, без конденсации

5.2.3 Рекомендованный интервал между калибровками

Калибровочный интервал	
2 года	
2 года	

5.2.4 Характеристики встроенного источника испытательного напряжения

	Характеристики	Диапазон	Дополнительные условия
	Испытательное	U≤12 кВ	4570 Гц
	напряжение	U≤4 кВ	15400 Гц
	Частота	15400 Гц	_
C		≤ 100 мА	Непрерывная работа
	Сила тока ≤ 2	≤ 200 мА	Работа с перерывами: – работа – 2 мин; – перерыв – 8 мин
	Мощность	2400 BA	_

5.2.5 Максимально допустимая емкость объекта измерений

Напряжение	Частота	Емкость
100 B	50 Гц	6 мкФ
12 кВ	50 Гц	53 нФ
12 кВ	60 Гц	44 нФ

5.2.9 Питание

Наименование	Значение
Диапазон номинальных напряжений сети питания	100240 B
Частота сети питания	50 или 60 Гц
Максимальная мощность, потребляемая СА7200 от сети питания	Не более 1000 В∙А

5.2.10 Средства безопасности

Наименование	Назначение		
Кнопка "Safety Switch"	Блокировка подачи высокого напря- жения. Кнопка имеет три положения: ————————————————————————————————————		
Кнопка "Emergency Stop"	Аварийная остановка измерения		
Индикатор "HV"	Наличие высокого напряжения: – красный, высокое напряжение подано; – желтый, подача высокого напряжения возможна; – зеленый, подача высокого напряжения заблокирована		
Индикатор "GND"	Наличие защитного заземления: – красный, заземление СА7200 не подключено; – зеленый, заземление СА7200 подключено		
Светосигнальное устройство	Подача звуковых и световых сигналов во время выполнения измерения		

6 УСТРОЙСТВО И РАБОТА

6.1 Принцип действия СА7200

СА7200 выполняет неразрушающий контроль качества изоляции электротехнического оборудования. При этом на тестируемый участок изоляции подается испытательное напряжение в диапазоне от 0,1 до 12 кВ, не превышающее значения его рабочего напряжения.

Рисунок 6.1

Рисунок 6.1 иллюстрирует принцип измерения, использованный в СА7200. Напряжения, пропорциональные токам эталонного конденсатора С_N и объекта измерения (C_X, G_X), выделяются на шунтах R_N и R_X, соответственно. Эти напряжения поступают через усилители A_N и A_X на два аналого-цифровых преобразователя (ADC_N и ADC_X) и оцифровываются. Оцифрованные значения напряжений поступают в цифровой сигнальный процессор (DSP) СА7200, который выполняет фильтрацию, вычисление и выдачу результатов измерения.

Объектом измерения в данном случае является емкость C_X, условно представляющая тестируемый участок изоляции.

6.2 Объекты измерения СА7200 и выбор измеряемого участка изоляции

Объектами измерения при диагностике изоляции являются конкретные участки изоляции высоковольтного оборудования: силовых трансформаторов, шунтирующих реакторов, трансформаторов тока, высоковольтных вводов и т.п.

В качестве примера на рисунке 6.2 показано упрощенное изображение трехобмоточного трансформатора с обмотками и вводами одной из фаз, подготовленного к проведению испытаний (выводы обмоток закорочены). Участки изоляции, обозначенные, как емкости Снт, СLT, СнL, СтG, СLG, СнG, в данном случае являются объектами измерения. Условно эти объекты измерения можно разбить на две группы: незаземленные (емкости Снт, СLT, СнL) и заземленные (емкости СтG, СLG, CHG).

Рисунок 6.2

В соответствии с этим, схемы измерения, обеспечивающие выбор измеряемого участка изоляции, разделены на две группы:

– UST (Ungrounded Specimen Test) – схемы измерения незаземленных объектов;

– GST (Grounded Specimen Test) – схемы измерения заземленных объектов.

В таблице 6.1 представлены наименования схем измерения и соответствующие им условные изображения схемы СА7200, состояния его входов и положений коммутатора "Configuration selector".

Схема измерения	Состояние входов СА7200	Положение коммутатора "Configuration selector"
UST-1	Вход "I _x 1" используется как измерительный ка- нал. Входы "I _x 2" и ⊕ под- ключаются к потенци- алу Guard	D100.1C HV Output Configuration selector Ix1 Ix2 Guard
UST-2	Вход "I _x 2 используется как измерительный ка- нал. Входы "I _x 1" и 🕀 под- ключаются к потенци- алу Guard	D100.1C HV Output Configuration selector RR Rx Guard
UST-12	Входы "I _x 1" и "I _x 2 ис- пользуются, как измери- тельные каналы. Вход 🕀 подключается к потенциалу Guard	D100.1C HV Output CN CN CN COnfiguration selector Lt Lt Guard
GST-12	Входы "I _x 1", "I _x 2 и ⁽ ис- пользуются, как измери- тельные каналы	D100.1C HV Output

CA7200

нv

соответствующая схеме измерения GSTg-12, участка изоляции (емкость С_{НG}), который является заземленным объектом измерения. Все остальные емкости не измеряются, поскольку подключены к точке Guard с помощью синего и желтого кабелей и за счет соответствующего положения переключателей коммутатора "Configuration selector".

Рисунок 6.4

Продолжение таблицы 6.1					
Схема измерения	Состояние входов СА7200	Положение коммутатора "Configuration selector"			
GSTg-1	Входы "I _x 2" и ⊕исполь- зуются как измеритель- ные каналы. Вход "I _x 1" подключается к потенциалу Guard	D100.1C HV Output			
GSTg-2	Входы "І _х 1" и ⊕ ис- пользуются как измери- тельные каналы. Вход "І _х 2" подключается к потенциалу Guard	D100.1C HV Output			
GSTg-12	Вход ⊕ используется как измерительный ка- нал. Входы "I _x 1" и "I _x 2" под- ключаются к потенци- алу Guard	D100.1C HV Output			

Рассмотрим схему измерения с помощью СА7200 (рисунок 6.3) одного из участков изоляции (Снт), которая соответствует схеме измерения незаземленных объектов (схема UST-2). При таких подключениях кабелей и положениях переключателей, входящих в состав коммутатора "Configuration selector" (таблица 6.1, схема UST-2), измеряется только участок изоляции Снт. Это достигается за счет того, что ток только этой ёмкости Снт протекает через шунт Rx, а все остальные емкости не оказывают влияния на результат измерения, так как все они подключены к потенциалу Guard.

В обоих случаях выбор нового участка изоляции осуществляется только за счет переключений коммутатора "Configuration selector" без выполнения новых кабельных соединений. В таблице 6.2 показаны варианты подсоединения с помощью коммутатора "Configuration selector" входов СА7200 к шунту R_X и к потенциалу Guard при измерении участков изоляции C_{HL}, C_{HT}, C_{HG} высоковольтной обмотки HV при неизменной схеме подключения к тестируемому оборудованию.

Таблица 6.2

0	Входы СА7200			05	
Схема измерения	l _x 1	I _x 2	÷	ООРЕКТР	
	подсоединены к:			измерения	
UST-1	Rx	Guard	Guard	Снг	
UST-2	Guard	Rx	Guard	Снт	
UST-12	Rx	Rx	Guard	Сн∟+Снт	
GST-12	Rx	Rx	Rx	CHL+CHT+CHG	
GSTg-1	Guard	Rx	Rx	Снт+Снс	
GSTg-2	Rx	Guard	Rx	CHL+CHG	
GSTg-12	Guard	Guard	Rx	C _{HG}	

Для борьбы с токами утечки, которые протекают, например, через паразитное сопротивление Z_{st} (рисунок 6.5, розовые линии), может быть использован кабель собственного изготовления с охранным кольцом, который подключается к входу "Guard".

Рисунок 6.5

6.3 Измерение тока холостого хода

На рисунке 6.6 показана схема измерения тока холостого хода обмотки L_{H3}. Токи через обмотки L_{H1} и L_{H2} исключаются из измерения (рисунок 6.6, розовые линии). Ток через обмотку L_{H2} не протекает, поскольку выводы этой обмотки подключены к измерительным входам прибора, имеющим одинаковые потенциалы. Ток, протекающий через обмотку L_{H1}, не участвует в измерении, т.к. эта цепь подключена к потенциалу Guard.

6.4 Измерение коэффициента трансформации

Измерение коэффициента трансформации выполняется на высоком напряжении, не превышающем номинального напряжения обмотки, к которой при измерении будет подключен высоковольтный кабель по схеме UST-1.

Процедура включает два этапа. На первом этапе выполняется измерение емкости С1 Конденсатора измерительного TTR (TTR Test Capacitor), входящего в дополнительный комплект (рисунок 6.7). На втором этапе Конденсатор измерительный TTR подключается к низковольтной обмотке трансформатора, а Кабель BB – к высоковольтной (рисунок 6.8). Результатом измерения будет емкость С2. Отношение значений емкостей С1 и С2 равно отношению напряжений высоковольтной и низковольтной обмоток трансформатора, т.е. коэффициенту трансформации

$$N = \frac{C1}{C2}.$$

6.5 Эквивалентная схема

В СА7200 при выводе результатов измерения используется параллельная эквивалентная схема замещения.

Расчет емкости C_{xs} для последовательной схемы замещения можно выполнить, воспользовавшись формулой

$$C_{XS} = C_{x} \cdot (1 + DF^2),$$

где C_x- результат измерения емкости с помощью СА7200,

DF – результат измерения коэффициента рассеяния с помощью CA7200.

8 Подключение к объекту

12		Mains Разъем для подключения Кабел: питания к сети питания с номиналь ным напряжением 100 240 VA0 50/60 Hz, 1000 VA и Выключател питания				
13 Сенсорный экран для управления СА7200						
14	Shargency See	Етегденсу Кнопка для аварийной остановки из мерения				
15	* • •	l _x 2	Разъем для подключения к тестируе- мому оборудованию с помощью Ка- беля измерительного, синего			
16			Разъем для подключения к тестируе-			

8 ПОДКЛЮЧЕНИЕ СА7200 К ТЕСТИРУЕМОМУ ОБОРУДОВАНИЮ

беля измерительного, желтого

Перед началом работы внимательно ознакомьтесь со сведениями и рекомендациями, изложенными в разделе 3 "БЕЗОПАСНОСТЬ" данного документа. При подключении СА7200 к тестируемому оборудованию не изменяйте последовательность операций, приведенных далее!

Обеспечивайте достаточные расстояния между токопроводящими жилами и землей, чтобы предотвратить возникновение электрической дуги.

1) Согласовать обязанности участников и сигналы, которые будут подаваться в процессе испытаний.

2) Убедиться, что тестируемое оборудование обесточено и заземлено.

3) Разместить СА7200 возле тестируемого оборудования на расстоянии не ближе двух метров от него. Установить защитные барьеры, если это необходимо.

2	0	Guard	Разъем (гнездо 4 мм) для подклю- чения к потенциалу Guard тех ча- стей тестируемого оборудования, влияние емкостей и проводимо- стей которых на результат измере- ния требуется исключить. Для под- ключения к этому разъему реко- мендуется использовать кабели собственного изготовления			
3	0	HV Output	Разъем для подключения к тести- руемому оборудованию с помо- щью Кабеля ВВ			
4	4 Отверстия для вентиляции					
5		Safety Switch	Разъем для подключения кнопки "Safety Switch"			
6		Safety Strobe	Разъем для подключения Свето- сигнального устройства, входя- щего в дополнительный ком- плект (4.2)			
7	۲	HV	Индикатор подачи высокого напряжения			
8	٥	GND	Индикатор наличия заземления			
9			Разъем USB для подключения USB-флеш памяти			
10		Service Port	Сервисный разъем			
11	0000	FOC	Оптический разъем			

4) Присоединить Кабель заземления к разъему (=) на СА7200 и к шине заземления тестируемого оборудования. Подсоединение СА7200 к шине заземления тестируемого оборудования всегда должно быть первой операцией при проведении испытаний, а отсоединение СА7200 от шины заземления – последней!

5) Присоединить Кабель измерительный синий и Кабель измерительный желтый (один или оба) к разъемам "I_x1" и "I_x2" на CA7200, в соответствии с измерительной схемой.

6) Присоединить кнопку "Safety Switch" к разъему "Safety Switch" на СА7200. Если кабель с кнопкой "Safety Switch" не подключен, СА7200 работать не будет.

7) Присоединить Светосигнальное устройство к разъему "Safety Strobe" на CA7200.

8) Присоединить Кабель ВВ к разъему "HV Output" на СА7200.

9) Убедиться, что выключатель питания СА7200 находится в положении "OFF".

10)Убедиться, что розетка, к которой будет присоединен СА7200, имеет зажим защитного заземления и он подключен к цепи защитного заземления.

11) Присоединить Кабель питания к разъему "Mains" на СА7200 и к розетке сети питания.

12) Если питание СА7200 будет выполняться от автономного генератора, то убедиться в том, что он заземлен и имеет выходное напряжение и частоту, соответствующие требованиям СА7200 к сети питания.

13) Присоединить¹ Кабель измерительный синий и/или Кабель измерительный желтый (один или оба в зависимости от измерительной схемы) к тестируемому оборудованию.

14) Присоединить Кабель ВВ к соответствующему выводу тестируемого оборудования.

15) Установить Выключатель питания на СА7200 в положение "ON". На экране появится окно, при котором СА7200 был выключен в предыдущем сеансе работы. При присоединении ВВ кабеля к тестируемому оборудованию используются Зажим ВВ кабеля или Крюк ВВ кабеля, один из которых накручивается с помощью винтовой резьбы на конец ВВ кабеля. Выбор определяется размером или диаметром контакта, к которому должен быть присоединен ВВ кабель. В комплект входят приспособления, приведенные в таблице.

Наименование	Обозначение	Диаметр (размер) контакта, не более
Крюк ВВ кабеля	301531.012	65 мм
Зажим ВВ кабеля	301531.013	30 мм

На рисунке 8.1 показан ВВ Кабель и варианты присоединения его к тестируемому оборудованию.

Присоединение ВВ кабеля к тестируемому оборудованию

¹Присоединение кабелей СА7200 к тестируемому оборудованию выполнять в соответствии с информацией, приведенной далее в данном разделе.

Кабель измерительный может быть присоединен к контакту тестируемого оборудования с помощью одного из Зажимов кабеля измерительного или Зажима с подсоединенным к нему Расширительным зажимом. В комплект входят приспособления, приведенные в таблице.

Наименование	Обозначение	Диаметр (размер) контакта, мм не более
Зажим кабеля изме- рительного (рас- крыв до 9,5 мм)	685614.137	9,5 мм
Зажим кабеля изме- рительного (раскрыв до 32 мм)	685614.136	32 мм
Зажим кабеля измерительного сов- местно с Расшири-	685614.136 или 685614.137	120 мм
тельным зажимом	085014.090	

На рисунке 8.2 показан Кабель измерительный и варианты присоединения его к тестируемому оборудованию.

а) Кабель измерительный

b) Кабель измерительный с Зажимом кабеля измерительного, 685614.137;

с) Кабель измерительный с Зажимом кабеля измерительного, 685614.136 и Расширительным зажимом, 685614.090

Рисунок 8.2

Присоединение ВВ кабеля к дополнительному выводу ввода выполняется с помощью прикрученного к ВВ кабелю Зажима ВВ кабеля 301531.013 с присоединенным к нему Переходником для ВВ кабеля 685614.139, который подключается к дополнительному выводу ввода (рисунок 8.3).

Рисунок 8.3

Присоединение Кабеля измерительного к дополнительному выводу ввода

Присоединение Кабеля измерительного к дополнительному выводу ввода выполняется с помощью Переходника для кабеля измерительного 685614.138 (рисунок 8.4).

9.1 Ввод даты и времени

1) Перейти в окно "Main Menu", для чего нажать один или не-

сколько раз кнопку 🔄 в окне, которое открылось после включения питания. На экране появится окно (рисунок 9.1).

Рисунок 9.1

2) Перейти в режим настройки, для чего в окне "Main Menu" нажать

на кнопку 🌋 , на экране откроется окно "Settings" (рисунок 9.2).

Settings	14.08.2016 12:00:25	Date and Time 14.08.2016 12:00:1
 Date and Time Touch Screen Calibration Sound Settings 	 Firmware Version Contrast Restore Defaults 	Time Date 12:00 14.08.2016 0 1 2 3 4
Clear the Archive	-	
←		Apply ← → Cancel
Рисун	юк 9.2	Рисунок 9.3

3) Перейти в окно "Date and Time", для чего в окне "Settings" нажать на строку "Date and Time", на экране появится окно "Date and Time" (рисунок 9.3).

4) Ввести время и дату, для чего нажать в поле "Time" (рисунок 9.3), а затем, нажимая кнопки с цифрами, ввести время, затем аналогично ввести дату в поле "Date".

5) Подтвердить введенные значения и вернуться в окно "Settings", нажав кнопку Арриу.

9.2 Калибровка сенсорного экрана

CA7200

40

CA7200

Калибровка – это настройка сенсорного экрана для точного сопоставления координат экрана и точки касания пальцем. Калибровку экрана следует выполнять в том случае, если нажатие на одну область или кнопку ошибочно вызывает реакцию другой или не вызывает никакой реакции.

1) Перейти в окно, предназначенное для выполнения калибровки, для чего в окне "Settings" (рисунок 9.2) нажать на строку "Touch Screen Calibration". На экране появится окно (рисунок 9.4).

•			
•			
•			
÷			
Ψ			
Θ			
\oplus			
Θ			
	ψ		

Рисунок 9.4

2) Выполнить поочередно появляющиеся директивы. В заключение на экране появится окно с сообщением о том, что калибровка экрана выполнена успешно!

9.3 Регулировка громкости звуковых сообщений

1) Перейти в окно "Sound Settings" (рисунок 9.5), предназначенное для регулировки громкости звуковых сообщений, для чего в окне "Settings" (рисунок 9.2) нажать на строку "Sound settings".

Рисунок 9.5

2) Установить необходимый уровень громкости, для чего выполнить

регулировку, нажимая на изображения (рисунок 9.5, поз.1). Для проверки результата, нажать кнопку Test. Для отключения звука, нажать

на изображение (рисунок 9.5, поз.2).

3) Подтвердить установленный уровень громкости и вернуться в окно "Settings", нажав кнопку <u>Apply</u>.

9.4 Версия программы

В окне"Settings" (рисунок 9.2) нажать на строку "Firmware Version", на экране появится окно, информирующее о версии программы (рисунок 9.6). Для возврата в окно "Settings" нажать ОК.

9.5 Регулировка контрастности экрана

1) В окне "Settings" (рисунок 9.2) нажать на строку "Contrast", на экране появится окно, позволяющее отрегулировать уровень контрастности экрана (рисунок 9.7).

2) Выполнить регулировку, воспользовавшись ползунком (рисунок 9.7, поз.1). Подтвердить выбор и вернуться в окно "Settings" (ри-

9.6 Восстановление настроек по умолчанию

Для восстановления настроек по умолчанию в окне "Settings" (рисунок 9.2) нажать на строку "Restore Defaults". На экране появится окно (рисунок 9.8), в котором нажать кнопку Yes .

Рисунок 9.8

10 ВВОД ДАННЫХ ПО ТЕСТИРУЕМОМУ ОБОРУДОВАНИЮ

Для идентификации тестируемого оборудования его данные рекомендуется занести в память CA7200 при подготовке к измерениям.

Для этого в окне "Main Menu" (рисунок 9.1) нажать кнопку . На экране появится окно "Device under Test" (рисунок 10.1), разделенное на 4 поля:

 – Location – информация о расположении тестируемого оборудования;

- Object - информация о тестируемом оборудовании;

- Nameplate - паспортные данные тестируемого оборудования;

- Test Conditions - информация о условиях испытаний.

Device Under Test 20.02.2018 12:6		
Location	Object	
Company: OLTEST	DUT: Transformer	
Substation: Lab2	Type: Oil	
Position: 489	Test Object: CHL	
Nameplate	Test Conditions	
Manufacture: OLTEST	Air Temperature: 20 °C	
Serial #: 236	Humidity: 50 %	
Year: 2016	Weather:	
Comr	nent:	
Apply	Cancel	

Рисунок 10.1

При нажатии на область какого-либо из полей информация, содержащаяся в нем, становится доступной для редактирования. После вне-

сения необходимых правок в данном поле нажать кнопку

Скорректировав информацию во всех четырех полях, нажать

кнопку для ее сохранения и выхода в основное окно "Main Menu" (рисунок 9.1). Внесенная информация сохраняется для всех дальнейших измерений до ее следующего изменения. Изменить ее можно по описанной процедуре из основного окна или непосредственно после выполнения измерения при сохранении его результатов.

11 ИЗМЕРЕНИЯ

11.1 Настройка режимов измерения

После нажатия кнопки в окне "Main menu" (рисунок 9.1) на экране появится окно "Measurement" (рисунок 11.1) с режимами, которые выполняет CA7200: "Insulation Test", "Tip-up Test", "Frequency Sweep Test", "Excitation Current Test", "Transformer Turns Ratio Test".

Настройка режимов измерения выполняется в каждом режиме отдельно. Изменения настроек одного режима не приводит к изменению настроек в других режимах. Для изменения настроек следует

выбрать режим измерения, в окне которого нажать кнопку 🔀

Для примера выбран режим "Insulation Test". После нажатия на

кнопку изиаtion Test откроется окно (рисунок 11.2).

Чтобы настроить режим измерения необходимо нажать на кнопку В окне (рисунок 11.2), на экране появится окно "Measurement Settings" (рисунок 11.3). Для перехода между окнами использовать кнопки , для потверждения выбора – кнопку

<u>В режимах "InsulationTest", "Tip-up Test", "Excitation Current Test",</u> <u>"Transformer Turns Ratio Test"</u> следует сделать выбор в опциях "Frequency Deviation", "Line Frequency", "Single Frequency" (рисунки 11.3-11.5).

Опция "Frequency Deviation" обеспечивает подавление помехи за счет отстройки частоты испытательного напряжения от частоты промышленной сети одним из двух вариантов:

- сначала на +2,5 Гц, а затем на -2,5 Гц, (вариант "±2,5 Hz");

– сначала на +5,0 Гц, а затем на -5,0 Гц (вариант "±5,0 Hz")

и затем выполнение соответствующих вычислений.

Для эффективного подавления помехи необходимо знать ее частоту. Опция "Line Frequency" предназначена для определения частоты помехи. При питании CA7200:

- от промышленной сети рекомендуется выбрать вариант "Auto";

 от автономного генератора следует выбрать "50 Гц" или "60 Гц" в зависимости от фактического значения частоты промышленной сети.

Опция "Single Frequency" обеспечивает выполнение измерения на заданной частоте в диапазоне от 15 до 400 Гц. Для ввода значения частоты, на которой будут выполняться измерения, в диапазоне от 15 до 400 Гц, нажать в поле (рисунок 11.5, поз.1), и в появившемся окне (рисунок 11.6) ввести необходимое значение.

11 Измерения

CA7200

CA7200

<u>В режиме "Frequency Sweep Test"</u> следует ввести ряд значений частоты испытательного напряжения (не более 15) в диапазоне от 15 до 400 Гц, на которых будут выполняться измерения.

После нажатия кнопки (рисунок 11.7). Чтобы настроить режим измерения необходимо нажать на кнопку 🔀 в окне (рисунок 11.7), на экране появится окно "Test Frequencies" (рисунок 11.8).

Freque	ndy Sweep Tr	est 28.11.2	28.11.2016 14:00:57		
100	F, Hz	DF, %	Select		
181	45.00	0.820	Value		
START	50.00	0.839			
0.1.1.1.1	60.00	0.858			
2	100.00	0.878			
	100.01	0.897			
	G aw		:=		
	J Z KV	₩ US1-1	韻		
Рисунок 11.7					

Для ввода значения частоты нажать в поле "Add frequency point" (рисунок 11.8), на экране появится окно "Test frequency" (рисунок 11.9), в котором выполнить ввод. После ввода нажать OK. Внести введенное значение в перечень "F, Hz", для чего нажать кнопку Add (рисунок 11.9). Аналогично ввести все остальные значения, которые должны входить в ряд.

Удалить значение частоты можно, выделив его в перечне "F, Hz", а

затем нажав кнопку 🗀

45

Для подтверждения выбора и возврата в окно "Frequency Sweep

Apply Test" (рисунок 11.9) нажать кнопку Test Frequencies 07.01.2017 14:00:12 Test Frequencies 28.11.2016 14:00:41 Add frequency point F, Hz Test frequency 15 45 Hz Add 30 60 2 3 45 6 5 ← \rightarrow Delete selected point 8 9 $\langle \times \rangle$ ΟK 0 Cancel Apply Cancel

Рисунок 11.8

Рисунок 11.9

После включения питания на экране отобразится окно, при котором СА7200 был выключен в предыдущем сеансе работы.

11.2 Тестирование изоляции (Insulation Test)

1) Ввести данные тестируемого оборудования, для чего выполнить указания раздела10.

2) Включить режим "Insulation Test", для чего в окне "Main

menu" (рисунок 9.1) нажать кнопку . на экране появится

окно "Measurement" (рисунок 11.1), в котором нажать кнопку комптеренти. На экране появится окно "Insulation Test" (рисунок 11.10).

Insulati	on Test			27.11.2	016 14:	00:57
18	U		1.002		kV	
START	F		15.02		Hz	<u>ا</u>
<u></u>	Сх		10.017	7	nF	I.
×	Ix		16.69		mΑ	I.
	PF		0.821		%	I.
Ŧ	F	1 kV	₽ ?+	UST-1	₿	°C 19.0
		_				

Рисунок 11.10

11 Измерения

В случае, когда характеристика используемого диэлектрика уже внесена в базу, или когда автоматическое приведение результатов измерения к базовой температуре 20°С не требуется, в открывшемся

Рисунок 11.14

Рисунок 11.15

Автоматическое приведение результатов измерения DF и PF к температуре 20°C выполняется в соответствии с документом "IEEE C57.12.90-1999 - Standard Test Code for Liquid-Immersed Distribution, Power, and Regulating Transformers" по формулам

$$DF@20^{\circ}C = \frac{DF}{K_{cor}}; PF@20^{\circ}C = \frac{PF}{K_{cor}},$$

где К_{сог} – коэффициент температурной коррекции.

3) Выполнить настройку режима измерения, для чего в

окне "Insulation Test" (рисунок 11.2) нажать кнопку и сделать в открывшемся окне установки, в соответствии со сведениями, изложенными в разделе 11.1.

4) Установить значение испытательного напряжения в диапазоне от 0,1 до 12 кВ, для чего в окне "Insulation Test" (рисунок 11.10) нажать кнопку² . В окне "Test Voltage" (рисунок 11.11) выбрать необходимое значение или ввести его в поле "U", для чего нажать в поле значения U (рисунок 11.11, поз.1) и в открывшемся окне "Voltage, kV" (рисунок 11.12) сделать ввод. Подтвердить ввод, нажав ОК. Подтвердить сделанный выбор, для чего нажать кнопку __________ в окне "Test Voltage" (рису-

нок 11.11) и вернуться в окно "Insulation Test" (рисунок 11.10).

5) Выбрать схему измерения из списка, для чего нажать кнопку³ UST-1 (рисунок 11.10), в появившемся окне"Test Mode" осуществить выбор (рисунок 11.13). Вернуться в окно "Insulation Test",

подтвердив выбор, для чего нажать на кнопку

6) Выбрать тип диэлектрика и ввести значение температуры, при которой проводятся измерения. Для этого в окне "Insulation Test" (рисунок 11.10) нажать кнопку

²Надпись на кнопке будет соответствовать последнему выбору.

³Надпись на кнопке будет соответствовать последнему выбору

Выбрать нужный диэлектрик, Подтвердить выбор нажатием Apply кнопки

圞 В открывшемся окне (рисунок 11.15) нажатием на кнопку можно вывести график температурной зависимости для выбранного диэлектрика (рисунок 11.17).

Здесь же (рисунок 11.15) в поле Т, °С внести действительное значение температуры тестируемого оборудования при измерении. В поле К_{сог} отобразится расчетное значение коэффициента температурной коррекции, которое будет использовано при автоматическом приведении результатов измерения DF и PF, выполненных при указанной температуре, к температуре 20°С.

Рисунок 11.16

Рисунок 11.17

В случае, когда испытывается диэлектрик, отсутствующий в базе, требуется предварительно внести в базу информацию о его характеристиках. Процедура внесения в базу пользовательского диэлектрика описана в п. 11.7.

7) Выбрать любые пять из двенадцати величин, которые будут отображаться в окне "Insulation Test" (рисунок 11.18). Для выбора величины, которая будет индицироваться в первой строке, нажать кнопку 📑 в этой строке (рисунок 11.18, поз.1). На экране появится окно (рисунок 11.19), в котором найти строку с нужным параметром, при необходимости воспользоваться скроллингом. Нажать на выбранную строку, а затем на Apply Так заполнить все пять строк в окне (рисунок 11.18). КНОПКУ

Insulati	on Test	27.11.2	016 15:	00:42
18.	U	1.002	kV	
START	F	15.02	Hz	
<u> </u>	Сх	10.017	nF	
×	Ix	16.69	mA	
	PF	0.821	%	
+	₽ 1 k∨	້ມ ພັງ UST-1		℃ 22.0

Рисунок 11.18

Рисунок 11.19

1%

8) Начать измерение, нажав на кнопку в окне "Insulation Test" (рисунок 11.12).

После появления на экране сообщения о включении высокого напряжения (рисунок 11.20) Руководитель должен разблокировать подачу высокого напряжения, для чего нажать в промежуточное положение кнопку"Safety Switch" и не отпускать ее до окончания измерения.

Кнопка "Safety Switch" в отжатом и полностью нажатом положении блокирует подачу высокого напряжения

Continue Выполнить измерение, для чего нажать на кнопку (рисунок 11.20). На экране появится окно (рисунок 11.21), демонстрирующее динамику процесса измерения. В завершение появится окно "Insulation Test" (рисунок 11.18) с результатами измерения.

11 Измерения

CA7200

2) Включить режим "Tip-upTest", для чего в окне "Main menu" (рисунок 9.1) нажать кнопку 🔛 , на экране появится окно "Measurement"

(рисунок 11.1), в котором нажать кнопку Тр-Ир Тест. На экране появится окно "Тір-up Test" (рисунок 11.22).

3) Выполнить настройку режима измерения, для чего в

окне "Tip-up Test" (рисунок 11.22) нажать кнопку 🔊 и сделать в открывшемся окне установки в соответствии со сведениями, изложенными в разделе 11.1

4) Установить максимальное значение испытательного напряжения в диапазоне от 0,1 до 12 кВ и ввести количество шагов испы-

тания в диапазоне от 2 до 15, для чего нажать кнопку (рисунок 11.20) и в окне "Test Voltage" ввести значения в поля "Max Voltage" и "Steps Number" (рисунок 11.23). Подтвердить выбор, для чего

Apply нажать на кнопку и вернуться в окно "Tip-up Test" (рисунок 11.22).

UST-1

5) Выбрать схему измерения, для чего нажать кнопку 🗵 в окне "Tip-upTest" (рисунок 11.22), на экране появится окно, в котором осуществить выбор. Для подтверждения выбора и возврата в предыду-

Apply щее окно нажать кнопку

easuring 40 % 20.01.2017 18:00:17 requency: 50 Hz Test Mode: GSTa-1 2 9.0kV 151mA lout 9.040 lkV 3 50.22 Hz nF Сх 10.045 STOP 150.7 mΑ PF 0 824 %

Рисунок 11.21

Шкалы "U" и " lout" (рисунок 11.21, поз.1) индицируют процесс установки испытательного напряжения U и силы тока lout на выходе встроенного источника напряжения. Значения отображают установленное значение испытательного напряжения U (п.6 данного раздела) и ориентировочное измеренное значение тока lout.

Виртуальная кнопка 🚩 (рисунок 11.21, поз.3) предназначена для неаварийного отключения высокого напряжения. После нажатия кнопки напряжение будет плавно снижено.

Для аварийной остановки измерения Оператор должен нажать кнопку "Emergency Stop". Когда опасность будет устранена, кнопку "Emergency Stop" следует отжать, повернув ее по часовой стрелке.

10) После появления окна "Insulation Test" (рисунок 11.18) с результатами измерения Руководитель должен заблокировать подачу высокого напряжения, отпустив кнопку "Safety Switch".

11) Сохранить результаты измерения в архиве, нажав на

кнопку 🗖 в окне "Insulation Test" (рисунок 11.18). В архиве будут сохранены результаты измерения всех двенадцати величин из списка, представленного в окне "Select Value From The List" (рисунок 11.19).

11.3 Тестирование зависимости параметров изоляции от напряжения (Tip-up Test)

1) Ввести данные объекта измерения, для чего выполнить указания раздела 10.

CA7200

3) Выполнить настройку режима измерения, для чего в

окне "Frequency Sweep Test" (рисунок 11.24) нажать кнопку открывшемся окне ввести ряд значений частоты испытательного напряжения (не более 15) в диапазоне от 15 до 400 Гц, в соответствии со сведениями, изложенными в разделе 11.1

4) Выбрать схему измерения, для чего нажать кнопку (рисунок 11.24) на экране появится окно, в котором осуществить выбор. Для подтверждения выбора и возврата в окно (рисунок 11.24) нажать

кнопку _____. 5) Выполнить измерение. в с

5) Выполнить измерение, в соответствии с п.п. 8-10 раздела 11.2.

6) Выбрать в окне "Frequency Sweep Test" в разделе "Select Value" (рисунок 11.24) одну из величин – DF (tgδ) или C (емкость), характеризующих состояние изоляции, зависимость которой от частоты необходимо проанализировать.

7) Выбрать вариант представления результатов измерения на экране: графический – или табличный – , нажимая на кнопку (рисунок 11.24, поз.1).

8) Сохранить результаты измерения в архиве, нажав на

кнопку 🗖 в окне "Frequency Sweep Test " (рисунок 11.24).

 Test Voltage
 27.11.2016 17:00:05

 Max Voltage
 Image

 10
 kV

 Steps Number
 Image

 5
 Image

 Apply
 Cancel

11 Измерения

Рисунок 11.23

 Выполнить измерение в соответствии с п.п. 8-10 раздела 11.2.

7) Выбрать в разделе "Select Value" (рисунок 11.22, поз.1) одну из величин, характеризующих состояние изоляции – DF (tgδ) или C (емкость), зависимость которой от напряжения необходимо проанализировать.

8) Выбрать вариант представления результатов измерения на

экране: графический – 🦾 или табличный – 🛄, нажимая на кнопку (рисунок 11.22, поз.2).

9) Сохранить результаты измерения в архиве, нажав на

кнопку 🗖 в окне "Тір-ир Test" (рисунок 11.22).

11.4 Тестирование зависимости параметров изоляции от частоты (Frequency Sweep Test)

1) Ввести данные тестируемого оборудования, для чего выполнить указания раздела 10.

2) Включить режим "Frequency Sweep Test", для чего в окне "Main menu" (рисунок 9.1) нажать кнопку

окно "Measurement" (рисунок 11.1), в котором нажать кнопку Sweep Test". На экране появится окно "Frequency Sweep Test" (рисунок 11.24).

 Λ

ı İ

Test" аналогично п. 7 раздела 11.2.

7) Выполнить измерение, в соответствии с п.п. 8-10 раздела 11.2.

8) Сохранить результаты измерения в архиве, нажав на

кнопку 🗖 в окне "Excitation Current Test" (рисунок 11.25).

11.6 Тестирование коэффициента трансформации (Transformer Turns Ratio Test)

Измерение коэффициента трансформации выполняется по схеме UST-1

1) Подключить Конденсатор измерительный TTR (411634.057) к СА7200, в соответствии со схемой, приведенной на рисунке 6.7, и с учетом указаний раздела 8. Конденсатор измерительный TTR будет включен в измерительную схему, как конденсатор С1.

2) Ввести данные объекта измерения, для чего выполнить указания раздела 10.

3) Включить режим "Transformer Turns Ratio Test", для чего в

окне "Main menu" (рисунок 9.1) нажать кнопку 💭 , на экране появится

окно "Measurement" (рисунок 11.1), в котором нажать кнопку типе Ratio Test . На экране появится окно "Transformer Turns Ratio Test" (рисунок 11.26).

4) Выполнить настройку режима измерения, для чего в окне "Transformer Turns Ratio Test" (рисунок 11.26) нажать кнопку и

11.5 Тестирование тока холостого хода (Excitation Current Test)

1) Ввести данные тестируемого оборудования, для чего выполнить указания раздела 10.

2) Включить режим "Excitation Current Test", для чего в окне "Main menu" (рисунок 9.1) нажать кнопку

окно "Measurement" (рисунок 11.1), в котором нажать кнопку Експаторание появится окно "Excitation Current Test" (рисунок 11.25).

3) Выполнить настройку режима измерения, для чего в

окне "Excitation Current Test" (рисунок 11.25) нажать кнопку и сделать в открывшемся окне установки в соответствии со сведениями, изложенными в разделе 11.1. При этом рекомендуется выполнить измерение на заданной частоте, используя опцию "Single Frequency". В окне "Measurement Settings" в поле "Edit Test Frequency" (рисунок 11.5, поз.1) ввести значение 50 или 60 Гц, соответствующее значению частоты сети питания тестируемого оборудования. При высоком уровне помех и при условии, что не произойдет насыщение трансформатора, может быть выбрана опция "Frequency Deviation". Насыщение трансформатора может привести к некорректным результатам.

Excitation Current Test 28.11.2016 16:00:33					
Ch.	U	12.04	kV		
START	Lx	0.0012	Н	i,	
ي ا	Ix	200.7	mA		
<u>×</u>	Ix	200.7	mΑ		
	P	1004	W	<u>ا</u>	
Ŧ	🛃 12 kV	비 UST-1			
Duovuov 11 05					

Рисунок 11.25

4) Установить значение испытательного напряжения в диапазоне от 0,1 до 12 кВ, для чего в окне "Excitation Current Test" (рисунок 11.25)

нажать кнопку / и ввести значения аналогично п. 4 раздела 11.2. 5) Выбрать схему измерения аналогично п.5 раздела 11.2.

6) Выбрать любые пять из шести величин, в том числе ток холостого хода Ix, которые будут отображаться в окне "Excitation Current"

сделать в открывшемся окне установки, в соответствии со сведениями, изложенными в разделе 11.1.

5) Запустить измерение емкости С1, для чего нажать Calibration Start (рисунок 11.26), кнопку на экране появится

окно "Attention!" (рисунок 11.27), далее выполнить указания п.п.8-10 раздела 11.2. Transformer Turns Ratio Test 28.02.2018 15:05:30 ЪV.

Рисунок 11.27

6) Отключить Конденсатор измерительный TTR от CA7200 в соответствии с п.п.1-5 раздела 13, не отсоединяя от СА7200 Кабель заземления.

7) Подключить к СА7200 тестируемое оборудование и Конденсатор измерительный TTR в соответствии с рекомендациями, изложенными в разделе 2.5 документа "Система диагностики изоляции СА7200. Рекомендации по применению"(411213.014 AG) и с учетом указаний раздела 8 данного документа.

8) Установить значение испытательного напряжения в диапазоне от 0.1 до 10 кВ. для чего в окне "Transformer Turns Ratio

Test" (рисунок 11.26) нажать кнопку 9 kV и ввести значение аналогично п.4 раздела 11.2.

9) Выполнить измерение коэффициента трансформации N, для

18.

чего нажать кнопку (рисунок 11.26) и далее выполнить операции в соответствии с п.п.8-10 раздела 11.2. В окне (рисунок 11.26) появятся результаты измерения.

10) Сохранить результаты измерения в архиве, нажав на В окне "Transformer Turns Ratio" (рисунок 11.26).

кнопку

11.7 Внесение в базу пользовательского диэлектрика при тестировании изоляции

В случае, если при тестировании изоляции в базе СА7200 (рисунок 11.16) отсутствует испытываемый диэлектрик, следует внести его название и температурную характеристику в базу. Для этого

Edit user table в окне "Dielectric Type" (рисунок 11.28) нажать на кнопку

Рисунок 11.28

Рисунок 11.29

В появившемся окне (рисунок 11.29) для внесения новой записи, соответствующей данному пользовательскому диэлектрику, нажать кнопку New. В открывшемся окне "Edit Dielectric Type" (рисунок 11.30) внести наименование диэлектрика в поле "Name", после чего сформировать его температурную характеристику, задавая для каждой точки характеристики пару значений – значение температуры в поле "Т,°С" и значение соответствующего корректирующего коэффици-

Edit Dielectric Type		20.02.2018 11:40:10
Name: New		
T, °C	T, °C	Kcor
Kcor		
Add point		
Delete point		
Apply		Cancel

đ	ента в поле "Ксог", и <u>добавляя</u> эту
	точку нажатием кнопки Add point.
ł	После задания всех точек характери-
	стики, нажать кнопку
	внесения диэлектрика в базу. В от-
	крывшемся окне (рисунок 11.29) нажа-
	тием на кнопку
	сформированный график температур-
	ной зависимости диэлектрика

Рисунок 11.30

После внесения пользовательского диэлектрика в базу дальнейшие действия по тестированию изоляции можно выполнять по процедуре 11.2.

12 РАБОТА С АРХИВАМИ

12.1 Сохранение результатов измерений

Результаты измерения, выполненного в любом из режимов, могут быть сохранены в архиве, соответствующем данному режиму.

Для этого после завершения измерения следует нажать кнопку В раскрывшемся окне (рис. 12.1) имеется возможность внести идентификационные данные объекта измерения и условия измерений или откорректировать данные, которые были внесены ранее (раздел 10).

Device Under Test	evice Under Test 25.06.2017_14:00:1	
Location	Object	
Company: OLTEST	DUT: DSF1	
Substation: 2rt	Type:	
Position: 22	Test Object:	
Nameplate	Test Conditions	
Manufacture:	Air Temperature: 10 °C	
Serial #:	Humidity: 50 %	
Year:	Weather: indoor	
Comment:		
Save	Cancel	
_		

Рисунок 12.1

Нажать кнопку «Save». В архиве, соответствующем режиму, в котором проводилось измерение, будут сохранены результаты этого измерения с указанными данными объекта.

12.2 Просмотр архива

Для просмотра результатов измерений, сохраненных в какомлибо из архивов, следует выйти из режима измерения в основное

Рисунок 12.2

Нажать кнопку . В появившемся окне (рисунок 12.3) выбрать требуемый архив, нажав кнопку, соответствующую режиму измерений, результаты которого необходимо просмотреть.

В появившемся окне (рисунок 12.4) каждому измерению соответствует запись, состоящая из трех строк, содержащая дату и время выполнения измерения. Записи расположены в порядке занесения в архив. Верхняя соответствует последнему измерению.

Рисунок 12.4

Нажатием в окне в области определенного измерения открывается окно с результатами этого измерения (рисунок 12.5). При количестве измерений более 4-х для выбора требуемого измерения следует воспользоваться полосой прокрутки, расположенной в правой части экрана.

CA7200

Для просмотра установок измерительного режима, с которыми

выполнялось данное измерение, нажать кнопку 🌂. Появившееся окно представлено на рисунке 12.8.

12.3 Сохранение архива в ПК

В архиве, соответствующем каждому из пяти режимов измерений СА7200, может сохраняться до 500 записей результатов измерений в хронологическом порядке. Когда количество записей в архиве превысит 500, каждая последующая запись будет записываться на место самой "старой".

Архивные записи могут быть переписаны на USB-флеш-память с последующим переносом ее содержимого на ПК. Для этого следует использовать флеш-память, входящую в комплект СА7200, или любую другую, отформатированную в режиме:

– файловая система – FAT32.

На экран выводятся результаты для пяти измеряемых параметров. При необходимости просмотреть еще какой-либо параметр, например, частоту F, нажать на кнопку в какой-либо строке, из раскрывшегося списка параметров выбрать требуемый, как показано на рисунке 12.6, после чего нажать клавишу "Apply"

Select Value F	rom The List	25.07.2017 1	5:55:26
DF@20°C	Dissipation factor@20C, % Current Power factor, % Power factor@20C, %		
Ix			
PF			
PF@20℃			
F Frequency		▼	
Apply		Cancel	

При сохранении результатов измерений, выполненных в режимах «Tip-up Test» и «Frequency Sweep Test», в нижней части окна результатов, аналогичном показанному на рисунке 12.5, имеется

кнопка ^Ш, позволяющая перейти от табличной формы представления результатов к графической.

Для просмотра идентификационных данных объекта измерения и условий, в которых они были проведены, нажать кнопку . Появившееся окно представлено на рисунке 12.7.

Для записи подключить флеш-память к разъему • - - CA7200..

Войти в окно данного архива, представленное на рисунке 12.4, в котором отображаются результаты измерений, сохраненные в этом архиве

Нажать на кнопку На экране должно появиться сообщение об успешной записи результатов на флеш с указанием имени сформированного файла формата .htm. Подключить флеш-память к ПК и скопировать файл с указанным именем на ПК. В дальнейшем с этим файлом можно работать при помощи браузера или Excel

12.4 Очистка архивов

Архивы (одновременно все пять архивов соответственно для пяти режимов измерений) могут быть полностью очищены путем выполнения следующих операций:

1) Из основного окна (рисунок 12.2) войти в окно "Settings", выбрать строку "Clear the Archives". На экране появится окно, представленное на рисунке12.9.

2) Подтвердить намерение очистить архив кнопкой Yes.

Перед выполнением очистки необходимо просмотреть все пять архивов и убедиться в отсутствии в них результатов, которые желательно сохранить.

13 ОТКЛЮЧЕНИЕ СДИ СА7200 ОТ ТЕСТИРУЕМОГО ОБОРУ-ДОВАНИЯ

1) Установить Выключатель питания на СА7200 в положение "OFF".

- 2) Отсоединить от СА7200 Кабель питания.
- 3) Не отсоединяя Кабель заземления, отсоединить все кабели из комплекта СА7200 от тестируемого оборудования.
- 4) Отсоединить от СА7200 оба кабеля (Кабель измерительный синий и Кабель измерительный желтый).
- 5) Отсоединить от СА7200 Кабель высоковольтный.

6) Отсоединить от CA7200 кабель с кнопкой "Safety Switch" и Светосигнальное устройство.

7) В последнюю очередь отсоединить Кабель заземления от СА7200 и от тестируемого оборудования.

14 УСТРАНЕНИЕ ПРОБЛЕМ

Рекомендуемые действия оператора при возникновении некоторых проблем приведены в таблице 14.1.

Таблица 14.1

Текст сообщения	Вероятная причина проблемы	Рекомендуемые действия оператора
"DUT is not stable. Unable to set the voltage"	Параметры объекта измерения неста- бильны. Это может быть вызвано пробо- ями объекта измере- ния	Проведите измере- ние при минималь- ном значении высо- кого напряжения
"Unable to set the voltage"	Закорочен высоко- вольтный выход	Проверьте схему подключения СА7200 к тестируемому обору- дованию
"Device under test break down"	Пробой тестируемого оборудования	Проверьте схему подключения СА7200 к тестируе- мому оборудованию

CA7200

Текст сообщения

14 Устранение проблем

Вероятная причина проблемы	Рекомендуемые действия оператора
Тревышена допусти- мая температура встроенного источ- ника испытательного напряжения.	Для охлаждения при- остановите испыта- ния. Рекомендуется питание СА7200 при этом не выключать. Тогда охлаждение будет выполняться эффективнее, по- скольку будет рабо- тать внутренняя вен-

"HV Power Source overheat"	Превышена допусти- мая температура встроенного источ- ника испытательного напряжения.	Для охлаждения при- остановите испыта- ния. Рекомендуется питание СА7200 при этом не выключать. Тогда охлаждение будет выполняться эффективнее, по- скольку будет рабо- тать внутренняя вен- тиляция. Дальней- шие измерения вы- полняйте с учетом сведений, приведен- ных в 5.2.4
"Ambient temperature is too high"	Температура окружа- ющей среды превы- шает максимальную температуру эксплуа- тации СА7200	Приостановите ис- пытания до пониже- ния температуры окружающей среды ниже верхнего зна- чения, приведен- ного в 5.2.8. Убедитесь, что от- верстия для венти- ляции не закрыты.

Текст сообщения	Вероятная причина проблемы	Рекомендуемые действия оператора
"Safety Switch not pressed or Emer- gency Stop Button pressed"	Подача высокого напряжения заблокирована.	Отожмите кнопку "Emergency Stop", повернув ее по часо- вой стрелке и нажмите кнопку "Safety Switch", уста- новив ее в промежу- точное положение
"Ground is not con- nected"	Заземление прибора выполнено некорректно	Проверьте схему подключения СА7200 к тестируе- мому оборудованию. Проверьте подклю- чение защитного за- земления. Убеди- тесь, что розетка, к которой подключен кабель питания СА7200 имеет за- жим, который под- ключен к цепи за- щитного заземления
"HV Power Source overloaded"	Превышены допусти- мые значения харак- теристик встроенного источника испыта- тельного напряжения	Проверьте, соответ- ствуют ли значения активной мощности и силы тока встроен- ного источника испы- тательного напряже- ния, данным, приве- денным в 5.2.4

При появлении какого либо из сообщений, приведенных в таблице, следует выполнить рекомендации и повторить измерение.

При появлении повторных сообщений или возникновении других сообщений рекомендуется выключить питание СА7200 на несколько секунд, а затем выполнить измерение снова.

Если сообщения снова повторяются, следует обратиться производителю:

Почтовый адрес: Украина, 04128, г. Киев, а/я 33, ООО "ОЛТЕСТ" E-mail: <u>info@oltest.ua</u> Web-aдрес: <u>www.oltest.com.ua</u> Тел.: 380-44-537-08-01, 380-44-331-46-21